You are currently browsing the tag archive for the ‘Alternating Group’ tag.

In this post, we discuss a few ways in which the symmetric and alternating groups can be realized as finite collections of self-maps on the Riemann sphere. Throughout, our group operation will be composition of functions: as such, the maps we choose will necessarily be homeomorphisms of . Within this broad framework, two classes are of particular interest:

1. The group of biholomorphic maps (those that respect the structure of as a Riemann surface). It is well-known that such maps are given by Möbius transformations, i.e. rational functions of the form

satisfying . The group of Möbius transformations (also known as the *Möbius Group* and herein denoted ) is naturally isomorphic to , the projective (special) linear group, via:

2. The group of *conformal* maps , denoted for brevity. To be clear, here we refer to those maps which preserve **unsigned** angle measure. *(In contrast, some authors require conformal maps to preserve orientation as well.)* We recall the fundamental result that such maps contain the Möbius group as a subgroup of index two. To be specific, any conformal self-map on is either biholomorphic (returning to case (1)), or bijective and *anti-holomorphic*: a biholomorphic function of the complex conjugate .

After the fold, we begin a two-part program to calculate the maximal such that the symmetric group injects into (resp. ). Along the way, we study injections of the alternating group into , and highlight some exceptional cases in which our injections can be attached to group actions on a finite invariant set.