You are currently browsing the tag archive for the ‘Lie Group’ tag.

In differential calculus, the product rule is both simple in form and high in utility.  As such, it is typically presented early on in calculus courses — soon after the linearity of the derivative, in fact.  Moreover, the product rule is easy to derive from first principles:

Theorem (Product Rule): Let f and g be differentiable on the open set U. Then fg is differentiable on U, and we have

(fg)'(x)=f(x)g'(x)+g(x)f'(x)  for all  x \in U.

Proof: For x \in U, we have (by definition of the derivative)

\displaystyle(fg)'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon)g(x+\epsilon)-f(x)g(x)}{\epsilon}

\displaystyle = \lim_{\epsilon \to 0} \frac{\left(f(x+\epsilon)-f(x)\right)g(x+\epsilon)+f(x)\left(g(x+\epsilon)-g(x)\right)}{\epsilon}

\displaystyle = \lim_{\epsilon \to 0} \frac{g(x\!+\!\epsilon)\left(f(x\!+\!\epsilon)-f(x)\right)}{\epsilon}\!+\!\lim_{\epsilon \to 0} \frac{f(x)(g(x\!+\!\epsilon)-g(x))}{\epsilon},

under the assumption that each of these last two limits exists.  This of course holds, as these limits are g(x)f'(x) and f(x)g'(x), respectively.   \square

All in all, then, the product rule is easy to prove and easy to use.  But — and this is of utmost pedagogical importance — is the product rule intuitive? By this proof alone, I would argue not; the manipulation of the numerator is weakly-motivated and our result falls out without reference to more general phenomena.

In this post, we’ll explore the merits of a second proof of the product rule, one that I hope presents a motivated and compelling argument as to why the product rule should look the way it does.

Read the rest of this entry »

In 1946, S. Bochner published the paper Formal Lie Groups, in which he noted that several classical theorems (due to Sophus Lie) concerning infinitesimal transformations on Lie groups continue to hold when the (convergent) power series locally representing the group law was replaced by a suitable formal analogue.  It was not long before this formalism found far-reaching uses in algebraic number theory and algebraic topology.

Unfortunately, few students see more than two or three explicit (i.e. closed form) group laws before stumbling into the deep end of abstract nonsense.  In this article, we’ll see in a rigorous sense why this must be the case, providing along the way a complete classification of polynomial and rational formal group laws (over any reduced ring).

Read the rest of this entry »